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Abstract—This work introduces a variant of Monte Carlo Tree
Search (MCTS) for the game BattleSnake, a 4 player adversarial
grid-based game with simultaneous turns. The solution we pro-
pose solves the problem of node selection in MCTS by having each
player select a subset of nodes to explore instead of deterministi-
cally selecting a node, which is how traditional MCTS works. Our
implementation allows an MCTS-based Reinforcement Learning
model to iteratively improve against previous generations and
benchmark models.

I. INTRODUCTION

The study of game-playing AI is as old as computer science
itself. Turing, Shannon and Von Neumann were all fascinated
by the prospect of algorithms which could play games such as
chess at a human (or superhuman) level. For many years, chess
was a grand challenge for AI researchers, which culminated in
the historic victory of Deep Blue over Gary Kasparov. But this
victory can be attributed to sophisticated search algorithms and
advanced hardware, not machine learning. Systems like Deep
Blue are highly tuned to their domain, and rely heavily on the
domain expertise of their programmers.

The ambition of much of modern AI research is to instead
create general, blank slate systems that can learn a strong pol-
icy from first principles. Recently there have been impressive
results from the application of Reinforcement Learning (RL)
from self-play using tree search as a guide [Sil+17b]. Games
such as Chess, Go, and Shogi ([Sil+17a] have superhuman
quality agents. An important feature is that these games are
between two opponents making sequential moves, so the
traversal into new states is clearly defined. Similarly, for single
player games the agent acts at each layer of the tree instead
of alternating with the opponent.

Developing algorithms to solve these single player tasks
can lead to real-world applications; a high profile example
is AlphaTensor, where the researchers found an agent that
generates a series of operations to more efficiently multiply
matrices [Faw+22].

In this paper we develop a variant of tree search to train a
Reinforcement Learning (RL) agent in the popular program-
ming competition BattleSnake. We implement this algorithm
and demonstrate the iterative improvements of the learned
policy.

A. BattleSnake

BattleSnake is a turn based, simultaneous action, strategy
game/programming competition inspired by the classic Snake
arcade game. The BattleSnake environment is designed as a
starting point for programming projects. Each of four players
controls a “snake” with code that selects their move in one
of four cardinal directions. The 11x11 board state is updated
synchronously. During play a snake can consume food to
extend its body length by one and refill a slowly decreasing
health bar. A snake dies when it collides with a wall, has not
eaten for 100 turns, or collides with a body segment of itself
or another snake. If two or more snakes have a head-to-head
collision, the largest snake survives.

Fig. 1. A frame of BattleSnake with four agents on an 11x11 board.

In an official competition setting a player receives a data
structure containing the current board state from the server
hosting the match and has 500ms to respond with their
selected action (failing to respond in time results in your snake



repeating it’s previous move). The time limit constrains the
amount of look ahead that can be done using tree search
algorithms, such as minimax. Previous algorithms that have
proven to be successful are flood-fill (an algorithm that finds
connected positions) and A* (an algorithm that efficiently
moves to a target).

The theoretical complexity of BattleSnake is high in terms
of branching factor, which is the number of possible state tran-
sitions from any given state. However, this can be significantly
pruned in practice. If all agents are alive, each one has four
possible moves. Additionally, one item of food may or may
not spawn randomly on any empty tile each turn. This gives
us about 44 ∗ (121 + 1) = 31232 potential transitions. But
we can ignore most of them by assuming that snakes will
avoid moves that make them lose instantly (such as hitting
their own neck or a wall), and that food spawns are irrelevant
for search purposes. This reduces the search space to a much
more manageable 34 = 81 at most, and often even less (for
example, when some agents are dead or have only one viable
move). It is worth noting however that even this curtailed space
is often still significantly higher than that of chess (≈ 35), and
that the time control is much stricter than is usually the case
in chess.

These constraints make this an interesting problem for RL;
multiple agents, synchronous moves, and a high branching fac-
tor make exhaustive tree search computationally impossible.
The complexity is further increased by the stochastic addition
of food at random locations at random intervals, and some tree
search methods are unable to handle randomness.

B. Problem Definition

The implementation of MCTS from AlphaZero is not im-
mediately capable of handling BattleSnake due to multiple
agents jointly defining a state transition. Variants of MCTS for
multiple agents have been proposed before, and will be further
outlined in section I-C. Our proposed solution recognizes that
the quality of a move of a snake will depend on the moves
of other snakes, and that each snake selects a reduced set of
states that benefits them the most. During a real game (i.e.,
not for training), once each snake has made a selection, the
intersection of the sets of states is reduced to one, which is the
transition to the new state. However, when exploring the game
tree with MCTS for training purposes, choosing a set of moves
to transition to the next game state is far more complicated.

Creating an expert agent in BattleSnake is an important
problem to solve, as many problems in the physical world
can be thought of as multi-agent, simultaneous action games
(either zero sum like BattleSnake, or with elements of co-
operation), such as traffic on a road or mobile robots in a
warehouse.

The goal of MCTS-based RL is to train a neural network
(NN) to approximate the resulting MCTS tree. This paper
outlines and implements a variation of MCTS that is applicable
for multiple agents with simultaneous moves that is appropri-
ate for BattleSnake.

C. Related Works

With the recent renaissance in deep learning, there have
been many new ways of applying RL to problems such as
computer Go, which have branching factors that limit the
effectiveness of traditional tree search algorithms, such as
minimax. Deep Blue’s defeat of Kasparov in 1997 showed
that sufficient amounts of compute applied in clever ways
can surpass the strategic planning abilities of the strongest
human players, but it used inflexible domain specific systems.
AlphaZero, however, uses a general framework, using a deep
convolutional network to approximate the move probabilities
of a Monte Carlo search at each position.

Tak et al [TLW14] proposed Simultaneous Move Monte
Carlo Tree Search (SM-MCTS) for a variety of two player
games. They evaluate multiple formulations of the problem
including as Decoupled Upper Confidence Bounds for Trees,
Exp3, Regret Matching, and Sequential Upper Confidence
Bounds for Trees. Their goals differ from what we are propos-
ing in that we intend to approximate the resulting tree with a
NN for iterative improvements.

Lanctot et al [Lan+13] applied MCTS to Tron, a game that
resembles BattleSnake in some aspects. In this game, players
move simultaneously and win by surviving longer than their
single opponent while avoiding the walls they leave behind on
the board. They used two implementations of MCTS: one that
models the game sequentially during tree traversal but plays
Monte Carlo simulations simultaneously, and another that uses
SM-MCTS. They experimented with different algorithms for
growing the tree for SM-MCTS, such as DUCT, Exp3 and
Regret Matching. Decoupled UCT (DUCT) selects moves
sequentially but hides the other agent’s choice until both agents
have chosen, simulating simultaneous play. Exp3 samples
moves from a probability distribution based on their expected
reward. Regret Matching generates a policy by comparing the
regret values of moves. Our work is most similar to Exp3, but
we differ in using a learned policy (for both tree construction
and simulations) with a neural network.

There was a previous effort by a UVic team to apply the
AlphaZero architecture to BattleSnake, but they eschewed the
use of MCTS in favor of a pure value-based RL approach,
citing issues with mustering the necessary compute for an
MCTS based training pipeline [Sid+20]. In the domain of
BattleSnake, current SOTA methods are heavily reliant on
alpha-beta search methods with clever heuristics to maximize
the amount of look-ahead that can be done in the 500ms
response window.

II. METHODOLOGY

A. Coordinate System

The data structure provided at each turn comes in the form
of a dictionary. We have represented the information in the
dictionary as a series of layers, with 3 layers per snake (head
location, body segment locations, and health) and a food layer.
This results in an (11,11,13) array for a 4-player game on the
standard (11,11) game board.



The number of board states can be reduced by a factor of 4
by converting this array into a relative coordinate system. This
is inspired by [Sid+20] and is done by padding the board state
to a 2n − 1 square grid (where n is the width of the board),
translating the head of the selected snake to the center, and
rotating so that the snake faces up. Padding the board increases
the dimensionality of the board, but the complexity of the task
is reduced since “nearby” obstacles are always towards the
center of the board. Rotating the board reduces a snake’s action
space from the 4 cardinal directions into 3 relative directions
(L=left, F=forward, R=right) since a downwards move will
always collide with it’s neck. To ensure the snake doesn’t run
off the board, we also add a channel indicating which locations
are walls, so the final board dimensionality is (21,21,14).

B. Traditional MCTS

Monte Carlo Tree Search was introduced in [Abr86] to solve
the problem of creating trees for an intractable problem. The
challenge with other tree methods are that the number of nodes
of the tree may expand beyond what memory can handle.
The MCTS method iteratively builds a tree using simulations
from leaves to estimate the quality of the state. While the
MCTS method does not create a “true” tree, it will converge
to the optimal tree as more samples are taken. Furthermore, by
selecting the promising moves instead of an exhaustive search
of the tree, the algorithm indirectly incorporates pruning.

Algorithm 1 Traditional MCTS
while within time limit do

currentNode ← rootNode
while currentNode ∈ searchTree do

lastNode ← currentNode
currentNode ← SELECT(currentNode)

end while
lastNode ← EXPAND(lastNode)
Reward ← SIMULATION(lastNode)
while currentNode ∈ searchTree do

currentNode.BACKPROPAGATE(Reward)
currenNode.visitCount← currentNode.visitCount+1
currentNode ← currentNode.parent

end while
end while

MCTS can be broken down into 4 phases: selection, ex-
pansion, simulation, and backpropagation. Given the current
tree, a node is selected that balances exploitation of previous
rewards and exploration of interesting states. Selection is
continued until the algorithm finds a leaf. The leaf is expanded
to include all possible children. One of those children has
a simulation run to approximate the quality of that state.
Finally, the quality of the state is sent back up the tree through
backpropagation. The MCTS algorithm is more thoroughly
outlined in [Bro+12] and [Świ+22].

The primary challenge of implementing MCTS for Bat-
tleSnake is the selection phase, which we discuss in greater
detail in the following section. The specific challenge is in

selecting a node that greedily satisfies all 4 agents while
also exploring the game tree for very good moves which are
difficult to find.

C. Multiagent Simultaneous MCTS

With Multi-Agent MCTS [ZY19] and Simultaneous Move
MCTS [Lan+13] having both been developed, we propose a
combination of the two in order to effectively learn simul-
taneous multi agent environments: Multi-Agent Simultaneous
MCTS (MAS-MCTS). The algorithm supports any number of
agents simultaneously selecting moves.

Fig. 2. Transitions from a parent to a child are in the form of a 4 element
action.

In the case of BattleSnake, we support 4 agents selecting
one of up to 3 moves each turn, which collectively define
an action and state transition. Therefore our maximum non-
trivial branching factor from any state is: # moves# agents =
34 = 81. Agents select a move by considering what state
transitions could possibly result from that move, which is
the set of all possible actions where that agent chose that
move. For example, for an agent to consider moving left
they would consider the set of state transitions where they
move left, and every other agent can make any of their valid
moves. In the simple case of two agents, this would be the set
{(L,L), (L,F ), (L,R)}, where our agent moves left and the
other agent may move left, forward or right. Figure 2 shows
possible state transitions for BattleSnake. The arrows indicate
state transitions as a combination of moves of the snakes. If
a snake chooses to move left, there are 27 possible resulting
states due to the moves of the opponents.

The selection of which child node to visit is collectively de-
cided by the agents using a combination of exploitation—how
likely an agent is to win from that node—and exploration—a
measure of how novel the node is. The exploitation component
is defined in equation 1 as the total reward collected from
travelling to that node (Wa) divided by the number of visits
to that node (Na), repeated for each agent. This results in
a reward summarization of the set of moves for each snake.
The reward summarization is mapped to the 81 child nodes by



iterating over all permutations. This value is then normalized
to sum to one. Note that in the following equations, a is an
action, where an action is defined as a combination of all the
agents moves. Actions therefore represent the edge from a
node to a child node in the game tree.

Qa =
Wa

Na
(1)

The exploration component, U , is defined in equation 2.
The exploration coefficient (c) multiplies the NN probability
of selecting a given action, P (s, a), which is the product of
the probability that the NN assigns to that move for each snake
(equation 3). We therefore call the NN, fθ(s), at every state
when calculating the exploration component. For example,
given the NN probability of each move for each snake at state
s in Table I, if some action a = [L, L, R, F], then P (s, a) =
m1,1 * m2,1 * m3,3 * m4,2

TABLE I
NN OUTPUTS USED FOR CALCULATING P (s, a)

Alive Snakes Move Left Move Forward Move Right
fθ(s) for Snake1 m1,1 m1,2 m1,3

fθ(s) for Snake2 m2,1 m2,2 m2,3

fθ(s) for Snake3 m3,1 m3,2 m3,3

fθ(s) for Snake4 m4,1 m4,2 m4,3

In this table, mi,j is the probability that the NN assigns to
the ith snake to move in the jth direction

The remainder of equation 2 biases exploration of under-
visited nodes by dividing the number of visits of the children
(
∑81

b N(s, b)) by the number of all visits from that state (1+
N(s, a)).

Ua = cP (s, a)

√∑81
b N(s, b)

1 +N(s, a)
(2)

P (s, a) =
∏
i

Pr(fθ(s) = ai)

∀i such that snakei is currently alive
(3)

The selection of the node to visit is done by finding the
maximum Action Value VA = Q + U . As with traditional
MCTS, if the selected node has child nodes, this process is
repeated. If the selected node does not yet have children, the
node is expanded, and the Action Value of the child nodes are
calculated.

At the end of each MCTS loop for a given state, the selected
action to advance one turn in the real game is calculated by
taking a probability distribution of π 4. π is a 4x3 array, where
each element is proportional to how often a given snake made
a certain move during MCTS. This selection method makes
sense, since the number of visits to a node during MCTS,
Na, is determined by both the exploitation and exploration
components.

πi,j =
∑

a:ai=j

Na∑
b Nb

(4)

The following algorithm 2 describes the repeated process
of generating data and training the NN via self-play.

Algorithm 2 MCTS Training Loop
Generate initial set of training games using trivial policy
while NN improving do

while Games played < 200 do ▷ Generate data
Initialize new game with 4 identical NN agents
while Game is not over do

Use MCTS and the NN to calculate the best next
move probability for all agents, π

Save current game state and associated π
Move all agents 1 turn as a probability

distribution of π
end while

end while
Train new NN on generated games
Ensure new NN out-performs previous NN
NN ← new NN

end while

III. RESULTS

A. Initial Training Data

To generate the initial training data, 200 games were played
using MCTS simulations at each state to calculate how each
snake would move. For the first set of games, we use a trivial
agent that was classically coded to avoid immediately moving
into obstacles, but had no other planning routine. For this
initial set of games, each turn was simulated 2000 times with
a maximum depth of 10 steps or until only one snake remains,
whichever comes first. The intention here is to provide high
quality training data for the first NN. These games resulted in
approximately 270,000 samples for training.

B. Training

The NN is a simple convolutional neural network (CNN)
with two convolutional layers (16 filters, 3x3 kernel, ReLU
activation), followed by two fully connected layers with 256
neurons each and ReLU activation. There are then 3 output
neurons with a softmax activation. This model was trained
for 100 epochs with a batch size of 1024. The optimizer was
AdamW [LH17] with a learning rate of 5e-5 and weight decay
of 5e-5. The output of the NN is a 3 element probability
distribution determined by the MCTS summary, so we selected
Kullback-Leibler Divergence (KLD) as the loss function.

C. Training Loop

Once the NN was trained on the initial games, it becomes an
approximation of MCTS. The next set of games were trained
using the fixed weights of the NN. Each turn of these games
were simulated only 1000 times, since the planning of the NN
could produce higher quality exploration than a random policy.
This training loop is outlined in Algorithm 2.



Training the NN requires converting the board state into a
relative coordinate frame and reducing the predicted loss using
the MCTS generated tree summarization as the ground truth.

D. Architecture Modification

The most recent NN update includes an adjustment to
the architecture and a preprocessing step to the inputs. The
architecture has an additional fully connected layer of 256
neurons with a ReLU activation. The health of snakes were
reduced by a factor of 100. Finally, the snake bodies have
an inherent order to them (from neck down to tail) which
the network can access. The previous training data had these
body segments clipped to either zero or one, indicating either
the absence or presence of a body obstacle, respectively. This
alternative architecture and preprocessing was selected due to a
significant decrease in validation loss observed during training.

E. Evaluation

Here we evaluate the quality of the learned policy with
special attention paid to improvements between iterations.
The evaluation metric we use is the percentage of wins
against three opponents. Since BattleSnake has four agents,
our learned policy is expected to win 25% of the time if it is
performing at a similar level. This is an imperfect metric since
snake behaviours may be non-transitive, with snakes winning
more or less frequently depending on the behaviours of their
similarly matched opponents. As a first approximation, and
to demonstrate a trend in improvement, win percentage is
sufficient.

At the time of writing we have three iterations of the NN
policy. For each of the three iterations we are testing against
two types of opponents: a Trivial snake that is only able to
avoid immediately adjacent obstacles, and a Flood Fill snake.
The Flood Fill snake works by moving to the best non-obstacle
position according to a heuristic which calculates the best-case
longest-path possible from each available position.

Each iteration plays 500 times against three of the opponents
of the given type. Table II shows the learned policy is able
to regularly win against 3 Trivial opponents. This table also
shows that although it has a low win percentage against the
more complex Flood Fill snake, the win percentage increases
with each training iteration.

TABLE II
WIN PERCENTAGE VS 3 OPPONENTS

Policy vs Trivial vs Flood
Iter. 1 53.4% 2.8%
Iter. 2 62.4% 4.0%
Iter. 3 76.6% 6.8%

To ensure the snakes are improving relative to their previous
generation, we also test all three iterations together, with the
fourth spot filled with either the Trivial Snake or the Flood
Filling snake. The results of this test are summarized in Table
III. These values may not sum to 100% due to draws. Again,
500 games were played to limit the influence of random
chance.

TABLE III
WIN PERCENTAGE VS VARIED OPPONENT

Game Policy Wins
1 Trivial 4.4%
1 Iter. 1 15.8%
1 Iter. 2 23.2%
1 Iter. 3 54.2%
2 Flood 66.6%
2 Iter. 1 5.2%
2 Iter. 2 8.6%
2 Iter. 3 18.8%

These results indicate that not only is each training iteration
improving the model, but the improvements from Iter. 2 to
Iter. 3 are greater than from Iter. 1 to Iter. 2. Based on these
initial results, it is reasonable to anticipate that the model will
continue to improve with additional training.

IV. CONCLUSION

In this work we have outlined a variant of Monte Carlo
Tree Search for multiple adversarial agents in a sychronous
environment. We have shown this algorithm can be used
for training a neural network as introduced by AlphaZero
[Sil+17b] in an iterative process, and that later iterations of
the model outperform prior iterations.

V. FUTURE WORK

While the MCTS-based RL method we have developed is
generating good initial results, this project will undergo a num-
ber of changes in the coming weeks to improve performance.
In addition to experimenting with different NN architectures,
hyperparameter tuning, and increasing our depth of MCTS
simulation, we will also be updating our training pipeline, as
described in the following algorithm.

Algorithm 3 Improved MCTS Training Loop
Generate initial set of training games using trivial policy
while NN improving do

while Games played < 500 do ▷ Generate data
Initialize new game
while Game is not over do

Use MCTS and the NN to calculate the best next
move probability for all agents, π

Save current game state and associated π
Move all snakes 1 turn as a probability

distribution of π
end while

end while
Train 3 new NNs on generated games
Play 100 4-player evaluation games between the 3 new

NNs and the previous NN
NN ← the NN which won the most test games

end while

Aside from increasing the number of generated training
games for each model iteration, the difference between this
algorithm and the currently implemented pipeline (Algorithm



2) is the idea of training multiple NNs each iteration, then
selecting the best by running evaluation games. Generating
games is the most computationally expensive step in this
pipeline, so better utilizing the generated games may decrease
the number of training iterations needed to achieve an equiv-
alent skill level.

Finally, we will experiment with different rewards during
MCTS simulations. Our current model is only rewarded for
survival (with less reward if opponents are also alive). Giving
explicit reward for eliminating opponents, finding food, or
ending games quickly may significantly affect training. Since
BattleSnake is an incredibly complex and stochastic game,
there may be different playing styles that correlated with
different peaks of optimal play, and reward engineering may
be the key to unlocking certain styles of play.
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